
Abstract. A variety of atomic and molecular properties
can be expressed in terms of the electrostatic potential.
These include energies, covalent and anionic radii, elec-
tronegativities (chemical potentials) and a variety of
properties that depend upon noncovalent interactons.
We present a survey of such relationships, which may be
exact or approximate; they may involve the potential in
three-dimensional space, along the axes between bonded
atoms, at nuclei or on molecular surfaces. Thus, the
electrostatic potential, which is rigorously related to the
electronic density by Poisson’s equation, can be regarded
as, effectively, another fundamental determinant of
atomic and molecular properties.
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1 The electronic density and the electrostatic potential

The remarkable and extremely important Hohenberg–
Kohn theorem established that the properties of a
ground-state system of electrons and nuclei are deter-
mined, rigorously and completely, by the electronic
density, q(r) [1]. For example, the total energy can be
expressed as the functional

E ¼ f q rð Þ½ � : ð1Þ
Thus the theorem focuses attention upon the electronic
density, a physical observable, rather than the wave
function, a mathematical construct.

The Hohenberg–Kohn theorem has led to very sig-
nificant advances, both conceptual and computational.
Parr, Levy and their colleagues have made notable
progress in developing the theory and its relevance to
chemistry [2, 3, 4, 5, 6]; meanwhile the Kohn–Sham

formalism [7], as extended by Perdew, Becke and others
[3, 4, 6, 8], has provided the basis for accurate calcula-
tions of electronic and molecular properties of relatively
large systems, including correlation effects, at a cost in
computer resources comparable to that of Hartree–Fock
methodology.

The central role of the electronic density has further
been emphasized by Bader and his colleagues, in their
mathematically elegant theory of ‘‘atoms in molecules’’
[9]. However, q(r) does not always lend itself to further
analytical development. For example, the exact form of
Eq. (1) remains unknown, notwithstanding the very ef-
fective approximations that have emerged [3, 4, 6, 8].
Galvez and Porras [10] observed, with respect to the
electronic density of an atom, ‘‘It is hard to prove
mathematical properties of this quantity in a rigorous
way.’’

Poisson’s equation relates the electronic density to the
electrostatic potential, V(r), that is created by the nuclei
and electrons of the system [11]:

r2V rð Þ ¼ 4pq rð Þ � 4p
X
A

ZAd r� RAð Þ : ð2Þ

ZA is the charge on nucleus A, located at RA. V(r)
is given by Eq. (3), which is simply an expression of
Coulomb’s law:

V rð Þ ¼
X
A

ZA
RA � rj j �

Z
q r0ð Þdr0
r0 � rj j : ð3Þ

In view of the link between V(r) and q(r) that is indicated
in Eq. (2), suggest that the electrostatic potential can
also be regarded as a fundamental quantity, in terms of
which some analyses may be facilitated. For example,
while it has been shown empirically that q(r) decreases
monotonically with radial distance from the nucleus for
ground-state neutral atoms, proving this mathematically
continues to be a challenge [12, 13, 14, 15, 16, 17].
In contrast, this was established very easily for V(r) [13]
by means of Poisson’s equation.

We shall focus upon the electrostatic potential as a
determinant of atomic and molecular properties and
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reactive behavior. Our discussion will be on both exact
and approximate levels. For an earlier survey of some of
these topics, see Ref. [18].

2 Topography of V(r)

2.1 General

Equation (3) shows that the sign of the electrostatic
potential at any point in the space of an atom or
molecule depends upon whether the positive nuclear
contribution or the negative one of the electrons is
dominant there. In the case of a neutral, spherically-
averaged ground-state atom or positive monatomic ion,
V(r) is positive everywhere and goes down monotoni-
cally from the nucleus to zero at infinity [13, 19]. For a
negative monatomic ion, V(r) is positive near the nucleus
but then decreases to a negative minimum at a radial
distance rm, after which it approaches zero at infinity. At
the minimum, the encompassed electronic charge exactly
equals the nuclear charge [19], which is accordingly fully
shielded; thus the negative potential at rm is due entirely
to the excess electronic charge of the ion. This potential
determines the strengths of its interactions with other
ions. We have shown that the radial distances to the
minima provide good estimates of crystallographic ionic
radii [19, 20], and that the magnitudes of V(rm) correlate
well with lattice energies, for a given positive ion.

The isopotential surface V(rm) characterizes, there-
fore, a monatomic negative ion. Gadre and Shrivastava
[21] have extended this concept to polyatomic anions,
defining their boundary surfaces by the condition �V
(r)Æs(r)=0, where s(r) is a unit vector perpendicular to
the surface at r.

While the electrostatic potential is positive every-
where for neutral atoms, their interaction to form mol-
ecules is accompanied by subtle but very important
rearrangements of electronic charge that normally pro-
duce some regions of negative V(r) in the molecule [22,
23, 24, 26, 26]. These are typically associated with the

lone pairs of the more electronegative atoms (e.g. N, O,
F, Cl, etc.), the p electrons of unsaturated hydrocarbons
and strained C–C bonds. Each such region necessarily
has one or more local minima, Vmin [points at which V(r)
reaches its most negative values]. In the past, these have
often been used to identify and rank sites susceptible to
electrophilic attack [22, 23, 24, 25, 26]; this shall be
discussed further in a later section. It has been shown by
Pathak and Gadre [27], however, that there are no local
maxima other than at the positions of the nuclei. Thus,
V(r) decreases monotonically from each nucleus to the
local minima, which are separated by saddle points.
The topographical properties of molecular electrostatic
potentials have been studied extensively by Gadre and
coworkers [21, 27, 28, 29, 30, 31], both in the gas phase
and in aqueous solution.

2.2 Covalent radii

It has long been recognized that atoms can be assigned
‘‘covalent radii,’’ which can then be used to make
reasonable predictions of actual bond lengths in a
variety of molecules [32, 33, 34, 35, 36, 37, 38], either
by direct summation or by invoking some empirical
relationship. A number of different approaches have
been utilized to obtain covalent radii, frequently involv-
ing some manner of apportioning the experimentally
determined distances between bonded atoms in mole-
cules and crystals. Several sets of values, taken from the
literature, are given in Table 1. For the most part, they
are in fairly satisfactory agreement, although there are
some notable exceptions, for example, fluorine.

It is clear from the discussion in the preceding section
that the electrostatic potential along the internuclear axis
between two bonded atoms must reach an axial mini-
mum (usually positive [34]) at some intermediate point
rm. Then �V(rm)Æu ¼ 0, where u is a unit vector along the
internuclear axis. It follows that an element of charge,
dq, placed at the point rm feels zero electrostatic force
from either direction along the axis. Thus, rm appears to

Table 1. Covalent radii (Å)
Atom Literature values Distances to axial minimaa,b Distances

to V(r)=I c

Paulingd O’Keeffe–Bresee Huheey
et al.f

V(r) q(r)

H 0.30 0.38 0.37 0.42 (0.05) 0.47 (0.20) 0.40g

C 0.772 0.78 0.77 0.76 (0.05) 0.68 (0.19) 0.78
N 0.70 0.72 0.75 0.72 (0.04) 0.79 (0.20) 0.68
O 0.66 0.63 0.73 0.68 (0.03) 0.88 (0.06) 0.66
F 0.64 0.58 0.71 0.70 (0.02) 0.89 (0.09) 0.59
Si 1.17 1.12 1.18 1.05 (0.04) 0.74 (0.02) 1.13
P 1.10 1.09 1.10 1.01 (0.04) 0.73 (0.03) 1.01
S 1.04 1.03 1.02 0.97 (0.04) 0.84 (0.11) 0.99
Cl 0.99 0.99 0.99 1.00 (0.02) 1.18 (0.16) 0.90

aCalculated distances taken from Ref. [40]
b Standard deviations from average values are given in parentheses
c Ref. [53]
dRef. [34]
e Ref. [37]
f Ref. [38]
g Calculated using exact wave function
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be a natural axial boundary point between the two at-
oms and could be used to obtain their covalent radii.

We tested this idea for a group of representative
molecules, containing nine different atoms [40]. V(r) was
computed at the density functional BLYP/6-31G** level
(Becke exchange [41] and Lee–Yang–Parr correlation
functionals [42]). For 19 bonds in these molecules, we
found the distance from each nucleus to the axial mini-
mum of V(r). The average values of these distances are
listed in Table 1. Also included are the averaged distances
to the axial minima of q(r), since Bader and coworkers [9,
43, 44, 45] have argued that the condition �q(r)Æs(r) ¼ 0
defines the boundary surface of an atom in a molecule.

The first point to note in Table 1 is that the distances
to the axial minima of V(r) fluctuate relatively little,
much less that do their q(r) counterparts; the largest
standard deviations for the former are 0.05, while the
latter have three in the neighborhood of 0.20 and two
more that are 0.10 or more. Second, the distances to the
V(r) axial minima are overall in reasonable agreement
with the various covalent radii reported in the literature,
much more so than are those corresponding to the q(r)
minima; overall, the contrast is quite striking! For ex-
ample, the q(r) results imply that the sizes of the atoms
increase considerably from carbon to fluorine and
phosphorus to chlorine, and decrease from nitrogen
to phosphorus and oxygen to sulfur, all of which is
contrary to accepted chemical knowledge.

Digressing briefly, it is relevant to mention that
atomic charges determined on the basis of the �q
(r)Æs(r) ¼ 0 condition [9, 43] are also unrealistic in many
instances; for a detailed analysis, see Ref. [46]. Indeed a
seemingly more defensible approach to determining
atomic charges, which is increasingly being applied, is
by least-squares fitting to the molecular electrostatic
potential [24, 47, 48, 49, 50].

Returning to covalent radii, the evidence that has
been presented indicates that the minimum of V(r) along
the internuclear axis does represent a physically mean-
ingful boundary point between two bonded atoms. In
our earlier study, we also showed that the two atoms
contribute approximately equally to the magnitude of
V(r) at its axial minimum [40]. This may help to explain
some interesting observations related to covalent radii
which, rather surprisingly, involve the electrostatic
potentials of free atoms. It was found by Politzer et al.
[50, 51] that the radial distance at which V(r) equals the
atom’s chemical potential, l, is a fair approximation to
its covalent radius. The chemical potential was taken to
be l ¼ 0.5(I + A), where I and A are, respectively, the
ground-state ionization potential and electron affinity of
the atom [52]. Later, however, it was shown that the
points where V(r) ¼ I are in significantly closer agree-
ment with covalent radii reported in the literature [37,
53]. Some results are given in Table 1 [53], obtained
using Clementi and Roetti’s extended-basis-set Hartree–
Fock wave functions to calculate V(r) [54]. The success
of the V(r) ¼ I criterion can be rationalized by arguing
that at the covalent radius of an atom X bonded to an
atom Y, a valence electron on X should interact roughly
equally strongly with both nuclei; this requires that, at
this point, IX » VY(r). However, if the covalent radius

corresponds to the axial minimum of the molecular V(r),
at which we have shown that VX(r) » VY(r), then it is
also characterized by IX » VX(r). This interpretation is
supported by the general similarity between the covalent
radii resulting from these two independent approaches
(Table 1), which might even increase if a larger database
were used for finding the average distances to the V(r)
axial minima. This is being investigated. The particular
significance of the V(r) ¼ I condition yielding a reason-
able estimate of the covalent radius is the implication
that the latter is an intrinsic property of the isolated
atom, whereas it is usually perceived in the context of
bonding to other atoms.

3 Atomic and molecular energies

3.1 Exact relationships

It was pointed out in Sect. 1 that while the Hohenberg–
Kohn theorem guarantees that the energy of a ground-
state system of electrons and nuclei is a functional of the
electronic density [1], Eq. (1), the exact form of that
relationship has not been established [2, 3, 4, 5, 6, 7, 8].
In contrast, rigorous expressions have been derived for
the energies of atoms and molecules in terms of their
electrostatic potentials, specifically at their nuclei.

The starting point is the Hellman–Feynman theorem
[55, 56], from which the following expression can be
obtained, for atoms [57, 58, 59, 60]:

oEat

oZ

� �
N
¼ V0 ; ð4Þ

where V0 is the electrostatic potential at the nucleus of
an N-electron atom having nuclear charge Z and energy
Eat; from Eq. (3), V0 is given by

V0 ¼ �
Z

q rð Þdr
r

: ð5Þ

The molecular equivalent of Eq. (4) is [61]

oEmol

oZA

� �
N ;ZB 6¼A

¼ V0;A ; ð6Þ

where V0,A is the electrostatic potential at nucleus A,
having charge ZA and located at RA:

V0;A ¼
X
B6¼A

ZB
RB � RAj j �

Z
q rð Þdr
r� RAj j : ð7Þ

Integration of Eqs. (4) and (6) should yield formulas for
atomic and molecular energies in terms of electrostatic
potentials at nuclei and nuclear charges. This was done
by Foldy [57] for atoms and Wilson [61] for molecules,
and both results were subsequently extended by Politzer
and Parr [62] to produce

Eat ¼ 1

2
ZV0 �

1

2

ZZ

0

Z 0 oV0
oZ 0

� �
� V0

� �
N
dZ 0 : ð8Þ

and
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Emol¼1

2

X
A

ZAV0;A�
1

2

X
A

ZZA
0

Z 0
A

oV0;A
oZ 0

A

� �
�V

0;A

� �
N

dZ 0
A :

ð9Þ
Equations (8) and (9) are exact. A striking feature is that
the molecular expression is simply a summation of its
atomic counterparts for the constituent atoms; there are
no explicit interaction or ‘‘mixing’’ terms. This certainly
supports the concept of ‘‘atoms in molecules’’. (Alter-
native forms of Eqs. 8 and 9, having the same key
properties, have recently been presented by Politzer
[63].)

A second very interesting point can be brought out by
applying the virial theorem [64]:

Eat ¼ 0:5 Vne þ Veeð Þ ; ð10Þ

Emol ¼ 0:5 Vne þ Vee þ Vnnð Þ ; ð11Þ
where Vee, Vnn and Vne are, respectively, the electronic,
nuclear and nuclear–electronic interaction energies.
Looking at the first term on the right side of Eq. (8), it
is clear that

ZV0 ¼ Vne ; ð12Þ
while in Eq. (9)X
A

ZAV0;A ¼ Vne þ 2Vnn : ð13Þ

It follows then from the virial theorem that the integral
terms in Eqs. (8) and (9) can be written as

�
ZZ

0

Z 0 oV0
oZ 0

� �
� V0

� �
N
dZ 0 ¼ Vee ð14Þ

and

�
X
A

ZZA
0

Z 0
A

oV0;A
oZ 0

A

� �
� V0;A

� �
N

dZ 0
A ¼ Vee � Vnn : ð15Þ

In Eqs. (14) and (15), the electronic interaction energies,
which are two-electron properties, are expressed rigor-
ously in terms of electrostatic potentials at nuclei, which
are one-electron properties. This can be viewed as a
manifestation of the Hohenberg–Kohn theorem [1].

While the evaluation of the integrals in Eqs. (8) and
(9) clearly poses problems, the conceptual significance of
these relationships is in showing that exact atomic and
molecular energies can be obtained without explicitly
treating electronic interactions. It is easier to achieve
good estimates of V0 and V0,A than of Vee. For example,
it is known that Hartree–Fock V0 and V0,A are correct
through second order [65, 66]; i.e. the errors are third-
and higher-order effects. Thus, for the atoms from Li to
Cl, we found that the Hartree–Fock Vne(=ZV0) differ
from the predicted exact (nonrelativistic) values (taken
from Wang and Smith [67]) by an average of
0.184 hartrees [68], whereas the Hartree–Fock energies
deviate by an average 0.347 hartrees. Since it is actually

0.5Vne that enters the atomic energy expression, Eq. (8),
it follows that the error in Eat is 4 times as large as that
in the term involving V0. This means that inserting
Hartree–Fock V0 in Eq. (8) or a sufficiently accurate
approximate Eat–V0 relationship can be expected to lead
to atomic energies that are better than the Hartree–Fock
Eat. The same should be true of V0,A and Emol. This is
indeed the case, as mentioned further in Sect. 3.2.

3.2 Approximate relationships

The integrals in Eqs. (8) and (9) would be more tractable
if they were not restricted to isoelectronic sequences [66].
It has been shown that this requirement can be
eliminated by introducing the assumptions [69]

oEat

oN

� �
Z
¼ 0 ð16Þ

and

oEmol

oN

� �
v rð Þ

¼ 0 ð17Þ

into the derivations of Eqs. (8) and (9), respectively. (In
Eq. 17, v(r) represents the electrostatic potential due to
the nuclei of the molecule.) Equations (16) and (17) are
equivalent to saying that the chemical potentials of
the systems, lat and lmol, are zero [52]. Under these
conditions, the isoelectronic restriction is removed and
the integrations in Eqs. (8) and (9) can be carried out
over any more convenient pathway. An obvious choice
is a series of neutral atoms or molecules. Both have in
fact been investigated; the average error for 13 atoms
(5 £ Z £ 17) was 0.8% [62], while for eight first-row
homo- and heteronuclear diatomic molecules it was
0.4% [69].

Within the framework of Thomas–Fermi theory [70,
71, 72, 73], a forerunner on an approximate level of the
rigorous density functional theory represented by the
Hohenberg–Kohn theorem [1, 2, 3, 4, 5, 6], all neutral
atoms and molecules do have zero chemical potentials,
i.e. Eqs. (16) and (17) are obeyed. Lieb and Simon [74,
75] have shown that the Thomas–Fermi theory becomes
exact (in a relative sense) as the sum of the nuclear
charges in a system approaches infinity; thus, it may be
that the inaccuracy associated with using nonisoelec-
tronic integration pathways in Eqs. (8) and (9) will
diminish for large molecules.

In Thomas–Fermi theory, the energy of a neutral
atom is given by [73, 76]

Eat ¼ 3

7
ZV0 ; ð18Þ

which is equivalent to

Eat ¼ 3

7
Vne : ð19Þ

However when the Thomas–Fermi values of V0 are used
in Eq. (18), the results are very poor, in error by as much
as 30% [62,66]. Nevertheless, the form of Eq. (18) is
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suggestive, owing to its resemblance to the first term in
the exact formula, Eq. (8). Equations (18) and (19)
would follow from Eq. (8) if the integral term in the
latter were equal to one-seventh of the first term, or
invoking the virial theorem, if

Vne ¼ �7Vee : ð20Þ
It had already been demonstrated by Fraga [59] that

this condition is roughly satisfied at the Hartree–Fock
level; he then introduced it to obtain Eqs. (18) and (19)
from the Hellmann–Feynman theorem and showed that
using Hartree–Fock V0 reduces the errors to about 2%
[59, 62].

However Eq. (20) is rather an oversimplification. The
ratio Vnej =Veej actually decreases rapidly across the first
row, reaching a minimum of less than 6.0 for neon and
then leveling off, after aluminum, at about 6.2–6.3 [68,
77, 78]. For most atoms, therefore, a factor in the
neighborhood of 0.420 would be more appropriate in
Eqs. (18) and (19) than the original three-sevenths
(0.4286).

The relative success achieved for atoms by an ex-
pression as uncomplicated as Eq. (18) stimulated interest
in finding a molecular equivalent. Since the rigorous
formula for molecules, Eq. (9), is simply a summation
over atomic terms, it seemed reasonable to test the same
approach at the approximate level, i.e. [79]

Emol ¼ 3

7

X
A

ZAV0;A : ð21Þ

Equation (21) was found to reproduce Hartree–Fock
and Kohn–Sham density functional total energies (exact
were usually not available) to within about 1% [77, 79,
80, 81].

By combining Eqs. (13) and (21), the latter can be
written as

Emol ¼ 3

7
Vne þ 2Vnnð Þ ; ð22Þ

which is the molecular analogue of Eq. (19). It is sig-
nificant, however, that the simple summation relation-
ship between the atomic and molecular expressions,
whether rigorous or approximate, exists only when they
are written in terms of electrostatic potentials at nuclei.

Just as in the atomic case, the approximate molecular
formula, Eq. (21), would follow from the rigorous one,
Eq. (9), if the integral term in the latter were one-seventh
of the first term, or putting it alternatively, if

Vne þ 2Vnn ¼ �7 Vee � Vnnð Þ : ð23Þ

We have investigated the degree to which Eq. (23)
is satisfied for 24 molecules, primarily diatomic
and triatomic, at the density functional B3PW91/
6-311+G(3df,2pd) level (Becke three-parameter hybrid
functional [82] with Perdew–Wang 91 correlation [83]).
The ratio Vne þ 2Vnnð Þj = Vee � Vnnð Þj averaged 6.65 with
a root-mean-square deviation of 0.41 [84].

The relative success of Eq. (21) stimulated a great
deal of interest which led to the development of a
number of approximate energy relationships based upon
electrostatic potentials at nuclei. Some of these are

modifications of Eq. (21), while others reflect different
approaches. As anticipated (Sect. 3.1), Hartree–Fock V0

and V0,A were found to often produce energy quantities
that are better than Hartree–Fock, sometimes nearly
exact. This work has been reviewed by Levy et al. [66]
and by Politzer [85, 86, 87]. The most recent versions of
Eq. (21), which have the form

Emol ¼
X
A

kAZAV0;A ; ð24Þ

where kA is a parameter that depends upon the atom,
achieve an accuracy of 0.10% relative to the estimated
exact energies [68, 84]. Unfortunately the average error
in hartrees is 0.123 (77 kcal/mol); thus, Eq. (24) cannot
presently be used to calculate reaction energetics,
however a variety of other applications have been found
[68, 84].

4 Electronegativity

Parr et al. [52] have identified electronegativity with the
negative of the chemical potential; for atoms

vat ¼ �lat ¼ � oEat

oN

� �
Z

ð25Þ

and for molecules

vmol ¼ �lmol ¼ � oEmol

oN

� �
vðrÞ

: ð26Þ

They also showed that vat can be expressed rigorously
(through lat) in terms of the electrostatic potential at the
atom’s nucleus [52]:

vat ¼ �lat ¼ V0 �
oEat

oZ

� �
N¼Z

: ð27Þ

This was recently extended to neutral molecules [18]:

vmol ¼ �lmol ¼ V0;A � oEmol

oZA

� �
N¼

P
A

ZA

: ð28Þ

Equations (27) and (28) represent, in principle, an
unambiguous means for determining electronegativities.
Unfortunately they are given as small differences be-
tween large quantities; thus, any error in the latter is
greatly magnified in vat and vmol.

Another route to the electronegativity, also involving
the electrostatic potential, is provided by a fundamental
relationship of density functional theory [2, 52, 73]:

l ¼ dT q½ �
dq

� V rð Þ þ dex q½ �
dq

þ dec q½ �
dq

: ð29Þ

T, ex and ec are the kinetic, exchange and correlation
energy functionals, respectively. It should be noted that
l is a constant for a given system [2, 52, 88], even though
all the quantities on the right side of Eq. (29) are
functions of r. If the functional derivatives in Eq. (29)
can be evaluated for an atom or molecule, or if a point r
can be found where their sum is zero, then knowledge of
V(r) will permit the determination of lat or lmol (and
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hence vat or vmol). Efforts to locate such points have been
made [89, 90, 91], and Deb et al. [91] found their
estimated magnitudes for atoms and monatomic ions
to correlate with various properties, within families in
the periodic table. However, Eq. (29) has not, so far,
provided a successful approach to the determination of
electronegativities.

5 Noncovalent interactions

As discussed in Sect. 2.1, molecules typically have some
regions of negative electrostatic potential, in which are
necessarily found one or more local minima, Vmin, i.e.
points at which V(r) achieves its most negative values. It
might seem reasonable to regard these as the sites most
likely to undergo electrophilic attack, and this interpre-
tation has indeed met with some degree of success [22,
23, 24, 25, 26]. The Vmin are, however, not consistently
reliable for this purpose. One reason for this is that V(r)
is normally computed for the unperturbed ground state
molecule, and thus does not reflect any polarization
effects produced by the approaching electrophile [24, 92].
(A number of studies have attempted to correct for this,
for example, by means of perturbation theory; see the
early review by Politzer and Daiker [24] as well as later
work [93, 94, 95].) Another factor is that the most
negative regions may not be the locales of the most
reactive electrons [96, 97, 98, 99]. These problems can be
minimized by focusing upon noncovalent interactions,
which are primarily electrostatic in nature [56, 100, 101,
102, 103], but in which the separations are sufficient that
polarization and charge transfer are not significant. This
includes the early stages of biological ‘‘recognition’’
processes, for example, between drugs and receptors or
enzymes and substrates, and the application of electro-
static potentials to their analysis has a long history [24,
25, 103, 104, 105, 106, 107].

In dealing with noncovalent interactions, it seems
reasonable to look at the electrostatic potentials on the
three-dimensional ‘‘surfaces’’ of the molecules, since it is
through these that they ‘‘see’’ or ‘‘feel’’ each other. There
is of course no rigorous basis for defining a molecular
surface. A common approach has been in terms of a set
of fused spheres centered on the individual nuclei and
having some appropriate radii, for example, van der
Waals [108, 109, 110, 111]. We prefer to follow Bader
et al. [112] and use an outer contour of the electronic
density, normally q(r) ¼ 0.001 e/bohr3. This has the
advantage that it reflects the specific features of the
molecule, such as lone pairs, strained bonds, etc. Other
contours of low magnitudes of q(r), e.g. 0.002 e/bohr3,
would serve equally well [113]. For an excellent discus-
sion and overview of treating electrostatic interactions,
focusing upon biological systems, see Ref. [114].)

Considerable insight can sometimes be obtained from
the qualitative examination of the electrostatic potentials
on molecular surfaces [107, 115] (or in earlier years, in
planes above the molecules [24, 25, 104, 106]). For ex-
ample, this can reveal patterns of positive and negative
regions that promote or inhibit certain interactions.
Over a period of time, however, we have also developed

a quantitative approach, which is based upon a detailed
characterization of the molecular surface electrostatic
potential, VS(r), in terms of certain statistically defined
quantities. Two of these are site-specific: the most neg-
ative and most positive values of VS(r), designated VS,min

and VS,max. While Pathak and Gadre [27] proved that
the only maxima of V(r) in three-dimensional space are
those associated with the nuclei, as mentioned in
Sect. 2.1, this does not preclude maxima in the potential
on the surface, VS(r). The other quantities that we use to
characterize VS(r) are global in nature; they include

1. The average positive and negative potentials over the
entire surface, �VV þ

S and �VV �
S

�VV þ
S ¼ 1

a

Xa

j¼1
V þ
S rj
� 	

; ð30Þ

�VV �
S ¼ 1

b

Xb

k¼1
V �
S rkð Þ : ð31Þ

2. The average deviation, P,

P ¼ 1

n

Xn
i¼1

VS rið Þ � �VVSj j : ð32Þ

3. The positive, negative and total variances, r2þ, r
2
� and

r2tot,

r2tot ¼ r2þ þ r2�

¼ 1

a

Xa

j¼1
V þ
S rj
� 	

� �VV þ
S


 �2 þ 1

b

Xb

k¼1
V �
S rkð Þ � �VV �

S


 �2 :

ð33Þ
4. A balance parameter, m,

m ¼ r2þr2�
r2totð Þ2

: ð34Þ

In Eq. (32), �VVS is the overall average of VS(r),

�VVS ¼ a�VV þ
S þ b�VV �

S

� 	
ða þ b= Þ : ð35Þ

P was introduced as a measure of internal charge
separation, which can be substantial even in molecules
with zero dipole moment, such as p-dinitrobenzene; it
correlates with several empirical indices of polarity [116,
117]. The variances r2þ, r2� and r2tot reflect the range, or
variability, of the positive, negative and overall surface
potentials, i.e. V þ

S ðrÞ, V �
S ðrÞ and VS(r) [118, 119]. Since

the terms in Eq. (33) are squared, the variances are very
sensitive to the extremes of VS(r); thus, r2tot is generally
much larger than P and does not necessarily even show
the same trend in a series of molecules [117]. Finally, the
role of m is to indicate the level of balance between the
strengths of the positive and negative surface potentials
[118, 119]. When r2þ ¼ r2�, m has its maximum possible
value, 0.250. The closer that m is to 0.250, the better the
molecule can interact through both its positive and
negative regions, whether this be strongly or weakly.

We have now evaluated the quantities defined in
Eqs. (30), (31), (32), (33) and (34), plus VS,max, VS,min

and the positive and negative surface areas, Aþ
S and A�

S ,
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for roughly 300 molecules, primarily organic. Some
of these data are available in various locations [117,
120, 121, 122, 123, 124, 125]. We find most molecules
have positive potentials on 60–75% of their surfaces,
i.e. Aþ

S > A�
S , but the negative potentials are usually

stronger; thus, �VV �
S

�� �� > �VV þ
S and r2� > r2þ. The imbalance

between r2� and r2þ is often quite severe, sometimes even

an order of magnitude. However when there are several

strongly electron attracting substituents competing for

the polarizable electronic charge, so that each receives

less of it, �VV �
S

�� �� and r2� decrease, and it can happen that
�VV þ
S > �VV �

S

�� �� and r2þ > r2�. Two examples are CF2Cl2 and
1,3,5-trinitrobenzene [124]. Indeed this atypical situation
is quite common among nitro-substituted energetic
compounds (e.g. explosives and propellants), and we
have been able to relate it quantitatively to their impact
sensitivities [123].

The global and site-specific quantities that have been
enumerated permit a thorough characterization of the
electrostatic potential on a molecular surface. The sig-
nificance of this is that we have succeeded, using small
subsets of these quantities, in developing analytical
representations of a variety of liquid-, solid- and solution-
phase macroscopic properties that depend upon nonco-
valent interactions. These include heats of vaporization,
sublimation and fusion, boiling points and critical con-
stants, partition coefficients, solubilities and solvation
energies, surface tensions, viscosities, diffusion constants,
and liquid and crystal densities. This work has been
reviewed elsewhere [117, 121, 124, 126, 127]. Recently it
has been extended to include interactions in biological
systems [107, 115, 125], for example, the potencies of
reverse transcriptase inhibitors as anti-HIV agents.

Our approach can be summarized conceptually in
terms of a general interaction properties function
(GIPF),

Property¼f VS;min;VS;max;�VV þ
S ;�VV �

S ;P;r2þ;r
2
�;r

2
tot;m;A

þ
S ;A

�
S

� 	
;

ð36Þ
but noting that our expressions normally involve,
in various combinations, only three or four of the
quantities on the right side of Eq. (36). We require
an experimental database consisting of the property
of interest for as many compounds as possible; the
variables in Eq. (36) are then computed for the corre-
sponding molecules and a statistical analysis package is
utilized to determine which subset of these variables
provides the best fit of the database.

As examples, Eqs. (37) and (38) show our GIPF
representations of heats of sublimation [128] and free
energies of solvation in 1-octanol [129]:

DHsubl ¼ a1A2S þ b1 mr2tot
� 	0:5�c1 ; ð37Þ

DGsolv ¼ �a2A0:5S � b2 VS;max
� 	3þc2VS;min þ d2 r2�

� 	2þe2 :

ð38Þ
In these equations, AS is the total surface area,
AS ¼ Aþ

S þ A�
S ; the coefficients ai,bi,ci, etc., are all

positive. The correlation coefficients for Eqs. (37) and
(38) are 0.950 and 0.984, respectively.

We make the relationships as general as possible,
even though the correlations could undoubtedly be im-
proved by treating different chemical classes separately,
and we use as few of the computed quantities as is
consistent with good accuracy, in order to gain insight
into the key physical factors involved in the interactions.
An important feature of the GIPF procedure is that liq-
uid-, solid- and solution-phase properties are expressed
in terms of quantities computed for individual mole-
cules; the surroundings are not explicitly taken into
account. Finally, since the entire procedure is compu-
tational (once the GIPF representation of a given
property has been established), it can be applied to
predicting properties for compounds that may not even
have been synthesized, and thus it can be utilized in
molecular design [130, 131].

6 Summary

We have focused successively upon several different
aspects of the electrostatic potential: its distribution
in three-dimensional space, V(r); its minima along the
internuclear axes between bonded atoms, defined by the
condition �V(rm)Æu ¼ 0; its values at the nuclei of
atoms and molecules, V0 and V0,A; and its variation on
molecular surfaces, VS(r). The common theme has been
to show the variety of atomic and molecular properties
that can be related to the electrostatic potential, whether
rigorously or approximately. These range from intrinsic
features (such as energies, covalent and anionic radii and
electronegativities) to a wide array of properties that
depend upon noncovalent interactions. Our objective
has been to demonstrate that the electrostatic potential
can be regarded as a fundamental factor in determining
the natures and behavior of atoms and molecules.
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